Polymeric micelles as drug delivery systems: a reactive polymeric micelle carrying aldehyde groups

Author(s):  
Carmen Scholz ◽  
Michihiro Iijima ◽  
Yukio Nagasaki ◽  
Kazunori Kataoka
2021 ◽  
Vol 18 ◽  
Author(s):  
Rohini Bhattacharya ◽  
Asha P. Johnson ◽  
Shailesh T. ◽  
Mohamed Rahamathulla ◽  
Gangadharappa H. V.

: Diabetes mellitus is found to be among the most suffered and lethal diseases for mankind. Diabetes mellitus type-1 is caused by the demolition of pancreatic islets responsible for the secretion of insulin. Insulin is the peptide hormone (anabolic] that regulates the metabolism of carbohydrates, fats, and proteins. Upon the breakdown of the natural process of metabolism, the condition leads to hyperglycemia (increased blood glucose levels]. Hyperglycemia demands outsourcing of insulin. The subcutaneous route was found to be the most stable route of insulin administration but faces patient compliance problems. Oral Insulin delivery systems are the patient-centered and innovative novel drug delivery system, eliminating the pain caused by the subcutaneous route of administration. Insulin comes in contact across various barriers in the gastrointestinal tract, which has been discussed in detail in this review. The review describes about the different bioengineered formulations, including microcarriers, nanocarriers, Self-Microemulsifying drug delivery systems (SMEDDs), Self-Nanoemulsifying drug delivery systems (SNEDDs), polymeric micelles, cochleates, etc. Surface modification of the carriers is also possible by developing ligand anchored bioconjugates. A study on evaluation has shown that the carrier systems facilitate drug encapsulation without tampering the properties of insulin. Carrier-mediated transport by the use of natural, semi-synthetic, and synthetic polymers have shown efficient results in drug delivery by protecting insulin from harmful environment. This makes the formulation readily acceptable for a variety of populations. The present review focuses on the properties, barriers present in the GI tract, overcome the barriers, strategies to formulate oral insulin formulation by enhancing the stability and bioavailability of insulin.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Swati Biswas

Tweetable abstract Micelles are nanocarriers for hydrophobic chemotherapeutic drugs. This editorial discusses the current status of preclinical micellar research and sheds light on the possibility of their clinical translation.


2016 ◽  
Vol 22 (19) ◽  
pp. 2796-2807 ◽  
Author(s):  
Rafeeq Tanbour ◽  
Ana M. Martins ◽  
William G. Pitt ◽  
Ghaleb A. Husseini

2021 ◽  
Vol 17 (12) ◽  
pp. 2298-2318
Author(s):  
Bashir A. Sheikh ◽  
Basharat A. Bhat ◽  
Bader Alshehri ◽  
Rakeeb A. Mir ◽  
Wajahat R. Mir ◽  
...  

Tuberculosis (TB) is still one of the deadliest disease across the globe caused by Mycobacterium tuberculosis (Mtb). Mtb invades host macrophages and other immune cells, modifies their lysosome trafficking proteins, prevents phagolysosomes formation, and inhibits the TNF receptor-dependent apoptosis in macrophages and monocytes. Tuberculosis (TB) killed 1.4 million people worldwide in the year 2019. Despite the advancements in tuberculosis (TB) treatments, multidrugresistant tuberculosis (MDR-TB) remains a severe threat to human health. The complications are further compounded by the emergence of MDR/XDR strains and the failure of conventional drug regimens to eradicate the resistant bacterial strains. Thus, new therapeutic approaches aim to ensure cure without relapse, to prevent the occurrence of deaths and emergence of drug-resistant strains. In this context, this review article summarises the essential nanotechnology-related research outcomes in the treatment of tuberculosis (TB), including drug-susceptible and drug-resistant strains of Mtb. The novel anti-tuberculosis drug delivery systems are also being detailed. This article highlights recent advances in tuberculosis (TB) treatments, including the use of novel drug delivery technologies such as solid lipid nanoparticles, liposomes, polymeric micelles, nano-suspensions, nano-emulsion, niosomes, liposomes, polymeric nanoparticles and microparticles for the delivery of anti-TB drugs and hence eradication and control of both drug-susceptible as well as drug-resistant strains of Mtb.


Nano Letters ◽  
2006 ◽  
Vol 6 (11) ◽  
pp. 2427-2430 ◽  
Author(s):  
Norased Nasongkla ◽  
Erik Bey ◽  
Jimin Ren ◽  
Hua Ai ◽  
Chalermchai Khemtong ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (23) ◽  
pp. 13889-13899
Author(s):  
Rui Yan ◽  
Xinyi Liu ◽  
Junjie Xiong ◽  
Qiyi Feng ◽  
Junhuai Xu ◽  
...  

Polymeric micelles have great potential in drug delivery systems because of their multifunctional adjustability, excellent stability, and biocompatibility.


MRS Bulletin ◽  
2010 ◽  
Vol 35 (9) ◽  
pp. 665-672 ◽  
Author(s):  
Christine Jérôme

Extensive research activity is currently devoted to controlled drug delivery systems, mainly as nano-sized particles. Although biocompatible and (bio)degradable polymers play a key role in this field, their shaping into colloidal particles (e.g., polymeric micelles and nanoparticles) usually requires the proper design of amphiphilic copolymers as effective stabilizers. Strategies for synthesizing these copolymers that preserve the intrinsic properties of the constitutive polymers are discussed in this article. Synthesis of amphiphilic copolymers with a more complex structure and endowed with functionality is also considered, with the purpose of enhancing the performance of the nanocarriers. The focus is increasingly on nanocarriers of the third generation, which resist coalescence and elimination by the immune system, and which are readily incorporated into chosen target cells. The more recent quest is for smart nanocarriers that exhibit the additional capacity of being stimuli-responsive.


Sign in / Sign up

Export Citation Format

Share Document